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LE'lTER TO THE EDITOR 

Lie algebras and polynomials in one variable 

A mrbinertt 
CPT CNRS-hminy, Marseille, F-13288, France, and @resen1 add-) Theorelischc 
Physik. FTH-Honggerberg, CH-8093 Zurich, Switzerland 

Received 4 June 1992 

A b s ( n e L  A dasrification of linear differential and difference equations in one variable 
having polynomial solutions (lhe generalized Bachner problem) i presented. me idea 
of the approach is based on mnsideralion of the eigenvalue problem for a polyno- 
mial in generators of the algebra s l ~ ( Q )  (for differential equations) or sli(Q), (for 
finitedifference equalions) given in the finitedimensional 'projectivized' mpresentation. 
Connection with the recently discovered quasi-exaclysolvable Schriidinger equations U 

discussed. 

In 1929 S Bochner asked about the classification of differential equations 

T d r )  = 4 ~ )  (1) 

where T is a linear differential operator of kth order in one real variable e E IR and 
c is the spectral parameter, having a sequence of orthogonal polynomial solutions (see 
Littlejohn (1988)). 

Lkfinition. Let us give the name of generalized Bochner problem to the problem of 
classifying the differential equations (1) having (n + 1) eigenfunctions in the form of 
a polynomial of order not higher than n. 

In mrbiner (1592) a general method has been formulated for generating linear 
differential operators, linear matrix differential operators and linear finite-difference 
operators in one and several variables, for which corresponding eigenvalue prob- 
lem possesses polynomial solutions. This method is closely connected to the finite- 

letter it will be shown that this method provides both necessary and sufficient condi- 
tions for the description of general linear finiteorder differential and finite-difference 
equations in one variable possessing polynomial solutions. 

Consider the space of all polynomials of order n 

d L ~ e ~ ~ i ~ n ~ ! ,  'prc@ct&.ized' .ep.ese.r.tie.r ef r;e e!g&ras pJ&ner 1992) !!! 

where n is a non-negative integer and r E R. 

t On leave' of absence from: Institute far Theoretical and Experimental Physics. Mauaw 117259, Russia. 
t E-mail: ?URBINER@CERNVM or ?URBINER@VXCERN.CERN.CH 
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Definition. Let us call a linear differential operator of the kth order, Tk quasi- 
eracity-solvable, if it preserves the space P,,. Correspondingly, the operator E,, 
which preserves the infinite flag Po c PI c P, c . . . c P,, c . . . of spaces of all 
polynomials, is called eractly-solvable. 

Lemma 1. (i) Suppose n > (k - 1). Any quasi-exactly-solvable operator of kth 
order Tk, can be represented by a kth degree polynomial of the operators 

J +  = x2a, - nx J o  = xa= - f n  J -  =a, (3) 

(the operators (3) obey the slz(W) commutation relations t). If n < (k- l), the part 
of the quasi-exactly-solvable operator T, containing derivatives up to order n can 
be represented by an nth degree polynomial in the generators (3). (ii) Conversely, 
any polynomial in (3) is quasi-exactly solvable. (iii) Among quasi-exactly-solvable 
operators there exist exactly-solvable operators E, c T,. 

Commenf 1. If we define the universal enveloping algebra Ug of a Lie algebra g 
as the algebra of all polynomials in generators, then Tk at k < n -t 1 is simply an 
element of the universal enveloping algebra Us,,*, of the algebra sl,(R) taken in 
representation (3). If k 2 n + l ,  then Tk is represented as an element of U*,2Fl plus 

than (k- n - 1). 
Ed"+l/ /~z"+l ,  .*here ,p !Lyea; &feien:ia! ape;a;oi of o;&e; Eo; p&?her 

Since sl,(R) is a graded algebra, let us introduce the grading of generators (3) 

d e g ( J t )  = +1 deg(JO)  = 0 deg(J-) = -1 (4) 

deg [(Jt)"+(Jo)"o((J-)"-] = n+ -n-. 

and hence 

(5) 

The grading allows to classify the operators T, in a Lie-algebraic Sense 

Lemma 2. A quasi-exactly-solvable operator Tk C Us,>*) has no terms of positive 
grading, iff it is an exactly-solvable operator. 

Theorem 1. Let n be a non-negative integer. Thke the eigenvalue problem for a 
linear differential operator of the kth order in one variable 

I 
T ~ P  = E ( P  (6) , 

where Tk is symmetric. The problem (6) has ( n  + 1) linear independent eigenfunc- 
tions in the form of polynomials in the variable I of order not higher than n, iff 
Tk is quasiexactly-solvable. The problem (6) has an infinite sequence of polynomial 
eigenfunctions, iff the operator is exactly-solvable. 

Commenf 2. The 'if' part of the first statement is obvious. The 'only if' part is a 

: 
1 I 
I 1 
\ '  

direct corollaly of lemma 1. \ ! I  
t m e  representation (3) is one of the abovementioned projectinzed' representations (see lbrbiner 
(1992)). 1. 
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This theorem gives a general classification of differential quatiom 

having at least one polynomial solution in I, thus resolving the generalized Bochner 
problem. The coefficient functions .,(I) should have the form 

i = O  

The mefficients aj,i can be expressed through the coefficients of the kth degree 
polynomial element of the universal enveloping algebra Hence the number of 
free parameters of the polynomial solutions is defined by the number of parameters 
of a general kth degree polynomial element of Us,,m, and this number is equal tot 

par(Tk) = ( k  + 1)' (9) 

(we denote the number of free parameters of the operator Tk by the symbol 
par(Tk)). Fbr the case of an infinite sequence of polynomial solutions the expression 
@j siiipKes io 

in agreement with known results (see e.g. Littlejohn (1988)). In this case 

One may ask a more general question: which nondegenerate linear differential 
operators have mite-dimensional invariant sub-space of the form 

(a.(.)? u(z)P(.), . . . 3  a(z)P(z)")  (12) 

where a(.) is a function and P ( z )  is a diffeomorphism of the line? Such operators 
are obtained from those of theorem 1 by the change of variable z c P( I) and the 
'gauge' transformation p(z) Y a(z )q (z ) .  

Let us consider the case of second order differential equations (7) possessing poly- 
nomial solutions, As follows from theorem 1 the corresponding differential operator 
should be. quasi-exactly-solvable and can be represented as 

Tz = c + + J + J t  + c + , J C J o  +ct-JtJ- + c o - J o J -  + c - - J - J -  + c+J+ 

+ c o J o + c - J - + c  (13) 

where cop,  c - ,  c E R, while par(Tz) = 9. If ctt = c + ~  = c+ = 0 ,  then T .  becomes 
exactly-solvable E2 (lemma 2) and par( Ez)  = 6. 

t Counting free parameters, one should intmduce a certain ordering of the generatom to avoid double 
munting because of "nutation relations. Also the quadratic Casimir operator and the double-sided 
ideal generated by it should no1 be taken into acmunl. 
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Lemmo 3. If the operator (13) is such that 

e++ = o  c+ = (in - m)ct0 for some n = 0,1,2,, . . (14) 

then the operator Tz preserves both P,, and Pm, par(T2) = 7. 
In facs lemma 3 means that T,(Ja(n),cap,c,)  can be rewritten as 

T.(Ja(m),cbp,cb,). h s  a consequence of lemma 3 and theorem 1 there are poly- 
nomials of order n and order m among polynomial solutions of (7). 

Remark. From the Lie-algebraic point of new lemma 3 implies the existance of 
representations of second-degree polynomials in the generators (3) possessing two 
invariant sub-spaces. In general, if n is not a non-negative integer in (3) (and 
hence (3) becomes infinite-dimensional), then among representations of kth degree 
polynomials in the generators (3), lying in the universal enveloping algebra, there are 
representations possessing 0, 1,2,. . . , k - 1 invariant sub-spaces. 

Substituting (3) into (13) and then into (6), we obtain 

P4(z)aZLP(z) t p,(+)a,vP(z) + P z ( z ) d z )  = 4 z )  (15) 

where the Pj(  z) are polynomials of j th order with coefficients related to cap, c- and 
n (see (10)). In general, problem (15) has (n + 1) polynomial solutions. According 
to lemma 1, if n = 1, then a more general spectral problem than (15), possessing 
two polynomial solutions of the form ( a z  + b), arises 

F 3 ( z ) a : i o ( ~ )  + Q,(zP,dz)  + Ql(z)v(z) = 4 ~ )  (16) 

where F3 is an arbitrary real function and Qj ( I), j = 1 , 2  are polynomials of order 
j. If n = 0 (one polynomial solution), the spectral problem (15) becomes 

F z ( z ) a Z d z )  + Fi(z)a.l~(z) + Q o d z )  = ~ d z )  (17) 

where Fz,,(z) are arbitrary real functions and Qo is a real constant. After the 
transformation 

t : p CI ' p ( z ( z ) ) e A ( " )  (18) 

where z c z(z) is a diffeomorphism of the line and A ( z )  is a certain real function, 
one can reduce (15)-(17) to the Sturm-Liouville problem 

(:si I 1 2  I - _ _  
\-Uz t V I L I I Y  ='P 

with the potential 

V ( Z ) = ( A ' ) ~ + A ' ' + P . ( ~ ( Z ) )  

where A = J(P3/P4)dz -log z' for (15). If the functions (18), obtained after 
transformation, belong to L,-space, we reproduce recently discovered quasi-exactly- 
solvable problems p r b i n e r  1988a, b), for which a finite number of eigenstates are 
found algebraically. For example 

Tz = -45'5- + 4 R J '  + 465' - 2(n + 1)J- (20) 
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leads to the spectral problem (19) with the potential 

V ( z )  = a 2 t 6  + Zabr4 + (b2  - (4n + 3 ) a ) r z  (21) 

for which the first (n + 1) eigenfunctions, even in I ,  can be found algebraically. 
It is worth noting that the use of (16) as input leads to the one-functional family 

of Schrodinger operators with two explicitly known eigenstates. One such operator 
has been described by Jatkar et al (1989), where the authors mnfusingly stated the 
non-existance of an underlying slz(R) algebra. 

Timking different exactly-solvable operators E, for the eigenvalue problem (7) one 
can reproduce the equations having the Hermite, Laguerre, Legendre and Jacobi 
polynomials as solutions p r b i n e r  1992)t. Also under special choices of the general 
element E one can reproduce all known fourth order differential equations giving 

4.> rise to infinite sequences of ortnogonai poiynomiais (see iittiejonn (i9S) ana otiner 
papers in that volume). 

Recently, Gonzalez-Lopez et a1 (1992) gave the complete description of second- 
order polynomial elements of Us,,cp leading to the square-integrable eigenfunctions 
of the Sturm-Liouville problem (1d) after transformation (18). Consequently, for 
second-order ordinary differential equations (15) the combination of this result and 

problem of the classification of equations possessing a finite number of afhogonal 
polynomial solutions. 

Now let us proceed to finite-difference equations in one variable. The generalized 
Bochner problem is defined in the same way as for differential equations. The only 
difference is the operator T in the problem (1) is a linear finitedifference operator 
(see definition below). For the case of one real mriable, a solution of the classification 
problem is very similar to the case of ordinary differential equations. 

Let us introduce the finite-difference analogue of the generators (3) (Ogievetski 
and 'brbiner 1991) 

theclem 1 gives 2 geEeX! m!!xin!? nf 'he Rr\C!?!?Pl prn!?!m ZS =e!! 2s fie m 9 x  ge!!en! 

~. where A E jn j jn+ i ) / {zn+2j ,  inj = ( i - q = j / ( i - q j  is the quantum sym- 
bol, p is a number characterizing the deformation, D t  = 1 + qrD and D f ( z )  = 
(f(z) - f (qz ) ) / ( l  - q ) r +  f ( q z ) D  is a shift or finite-difference operator (or the so 
called Jackson symbol (Exton 1983)). The operators (22) are obeyed by qdeformed 
commutation relations corresponding to the quantum S I ~ ( R ) ~  algebra (this is the so 
called 'Witten's second deformation' of SI, in the classification of C Zachos (Zachos 

If n is a non-negative integer, the representation (22) becomes finite-dimensional! 

and exactly-solvable operators. 

Definirion. Let us call a linear difference operator of the kth order, Fk quasi-mctly- 
solvable, if it preserves the space P,,. The operator Eh,  which preserves the infinite 
flag Po c PI c P, c . . . c Pn c . . . of spaces of all polynomials, is called eracrly- 
solvable. 

1441)). !f q - 1, *e p*smmutatia!! .e!.tin!!c rerlllre !cI the standard .!&R) 0"PS. 

Analogously, as for differential operators, one can introduce quasi-exactly-solvable 

t For instance, if a = 0 in GO), the equation (15) becomes the Hennite equation (afler some subtilution). 
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The analogue of the lemma 1 holds. 

Lemma 4. (i) Suppose n > (k - 1). Any quasi-exactly-solvable operator of kth 
order Fk, can be represented by a kth degree polynomial of the operators (22). If 
n < ( k  - l), the part of the quasi-exactly-solvable operator Pk mntaining derivatives 
up to order n can be represented by a nth degree polynomial in the generators (22). 
(ii) Conversely, any polynomial in (22) is quasi-exactly solvable. (iii) Among quasi- 
exactly-solvable operators there exist exactly-solvable operators kk c Tk. 

Similarly to slz(lw) , one can introduce the grading of the generators (22) of 
~ l ~ ( l w ) ~  (see (4)) and, hence, of monomials of the universal enveloping Us12p)q 
(see (5)).  The analogue of lemma 2 holds. 

Lemmo 5. A quasiexactly-solvable operator Tk has no terms of positive grading, iff 
it is an exactly-solvable operator. 

Theorem 2. %ke the eigenvalue problem for a linear difference operator of the kth 
order in one variable 

FVp!.) = E ( P ( Z : !  (23) 

where Tk is symmetric. The problem (23) has (n + 1) linear independent eigenfunc- 
tions in the form of polynomials in the variable I of order not higher than n, iff ;i; 
is quasi-exactly-solvable. The problem (23) has an infinite sequence of polynomial 
eigenfunctions, 8 the operator is exactly-solvable Eh. 

This theorem gives a general classification of finite-difference equations 

k 
Cii j ( z )D’v(z )  = ep(z)  
j = 0  

having polynomial solutions in 2. The coefficient functions should have the form 

7he coefficient? Z j , ;  are related to the coefficients of the kth degree polynomial ele- 
ment of the universal enveloping algebra and the number of free parameters 
in the polynomial solutions is defined by the number of free parameters in a general 
kth order polynomial in the generators (22)t. This number is given by 

par(Tk) = ( k  + I)* + 1 
t For Uie quantum sI2(P), algebra there are no polynomial Casimir operalan (see e.g. Zachm 1991). 

Casimir operator 
urns::, in $!E re,p:s:3s!i* (22) Ihe nlZ!iQMhiP k!Y!eS!! p!!e..Em ana!ngov$ P the quadralir 

q . 7 t . 7 -  - jojo + ( {n+  1) - n) jo  = n(n-{n+ I))  

appears. This a p m i i o n  becomes the srandard Casimir oprramr m the limit q - 1. 
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(particularly, par(P2) = 10). For the case of an infinite sequence of polynomial 
solutions, the formula (U) simplifies to 

j 
iij(I) = Xiij,pi 

i = O  

and the number of free parameters is given by 

(particularly, par( E2) = 7). The increase in the number of free parameters com- 
pared to ordinary differential equations is due to the presence of the deformation 
parameter q. 

The analogue of lemma 3 also holds. 

Lemma 6. If the operator i'.. (see (13)) is such that 

E++ = 0 E+ = ( k  - {m))E+, for m = 0 , 1 , 2 , .  . . (27) 

then the operator F2 presewes both Pn and Pm and polynomial solutions in I with 
8 free parameters occur. 

In Tbrbiner (1592) one can find the description of the equations having as the 
eigenfunctions the qdeformed Hermite, Laguerre, Legendre and Jacobi polynomials 
in this approach. 

Since in the limit q tends to one, lemmas 4, 5, 6 and theorem 2 coincide with 
lemmas 1, 2, 3 and theorem 1, respectively. Thus the case of differential equations in 
one variable can he considered as a particular case of finite-difference ones. 

In closing, I would like to thank to L Michel, V Ovsienko, S Bbachnikov and, 
especially, V Arnold and M Shubin for numerous useful discussions. As0 I am very 
grateful for hospitality extended to me by the Theoretische Physik, ETH where this 
work has been completed. 
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